Molecular dynamics investigation on edge stress and shape transition in graphene nanoribbons
نویسندگان
چکیده
Graphene nanoribbon (GNR) with free edges demonstrates unique pre-existing edge energy and edge stress, leading to non-flat morphologies. Using molecular dynamics (MD) methods, we evaluated edge energies as well as edge stresses for four different edge types, including regular edges (armchair and zigzag), armchair edge terminated with hydrogen and reconstructed armchair. The results showed that compressive stress exists in the regular and hydrogen-terminated edges along the edge direction. In contrast, the reconstructed armchair edge is generally subject to tension. Furthermore, we also investigated shape transition between flat and rippled configurations of GNRs with different free edges. It was found that the pre-existing stress at free edges can greatly influence the initial energy state and the shape transition.
منابع مشابه
Numerical Analysis of Shape Transition in Graphene Nanoribbons
Graphene nanoribbon (GNR) with free edges can exhibit non-flat morphologies due to preexisting edge stress. Using molecular dynamics (MD) simulations, we investigate the freeedge effect on the shape transition in GNRs with different edge types, including regular (armchair and zigzag), armchair terminated with hydrogen and reconstructed armchair. The results show that initial edge stress and ene...
متن کاملSpin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes
We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...
متن کاملAtomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension
Atomistic simulations are performed to study the nonlinear mechanical behavior of graphene nanoribbons under quasistatic uniaxial tension, emphasizing the effects of edge structures (armchair and zigzag, without and with hydrogen passivation) on elastic modulus and fracture strength. The numerical results are analyzed within a theoretical model of thermodynamics, which enables determination of ...
متن کاملSaddles, twists, and curls: shape transitions in freestanding nanoribbons.
Efforts to modulate the electronic properties of atomically thin crystalline nanoribbons requires precise control over their morphology. Here, we perform atomistic simulations on freestanding graphene nanoribbons (GNRs) to first identify the minimal shapes as a function of ribbon width, and then develop a core-edge framework based on classical plate theory to explore the effect of size and ribb...
متن کاملThermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study.
We have used molecular dynamics to calculate the thermal conductivity of symmetric and asymmetric graphene nanoribbons (GNRs) of several nanometers in size (up to approximately 4 nm wide and approximately 10 nm long). For symmetric nanoribbons, the calculated thermal conductivity (e.g., approximately 2000 W/m-K at 400 K for a 1.5 nm x 5.7 nm zigzag GNR) is on the similar order of magnitude of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014